Some Comments on Likelihood Functions

The likelihood L is a function of the parameters of a statistical model. It is used to estimate
the values of and uncertainties on those parameters for a given set of measurements. For
an ensemble of n measurements, the likelihood is defined as
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where f(x;6) is the probability density function for the statistical model of interest. The
best value of the parameters # can be determined by maximizing the likelihood function,
or equivalently, the log of the likelihood function.
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Often this procedure is described instead as minimizing — In £ (minimizing the minus log

likelihood).
The log likelihood can be Taylor expanded about its minimum. Since 9L/960|g—g, . = O:
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In the limit of large n, the distribution £ (due to the central limit theorem) becomes
Gaussian. Since for a Gaussian distribution a change in 2 In £ of one unit corresponds to a
1-0 variation in the parameter , the uncertainty on 6 is given by:
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Alternatively, the uncertainty on the estimated values of the parameters 6 can be obtained
by calculating the value of Af at which —21n £ increases by 1.0. In cases where In £ is not
parabolic, the uncertainties can be asymmetric.
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The definitions above depend on the fact that the probability density function f(x;6)
is normalized over the region of x where measurements can occur

/ - f(@;0)dr =1
For this reason, likelihood fits are not sensitive to the value of n. It is possible to add a
Poisson term to the likelihood function to include the number of events in the likelihood

fit. When a fit includes such a term, it is called an extended likelihood fit.

An example

Suppose a set of measurements x; are made in an experimental setup where the number of
events as a function of x follows the distribution

N(z)=A+ Bz for0<z <10

We would like to use the likelihood method to estimate the value of Kk = A/B. Let’s see
how to setup this problem.
The total number of events Nt can be determined
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and normalized probability density function f(z;0) is
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The overall likelihood function is therefore
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and the log likelihood is
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If the values z; are known, then — In (£(z; )) can be minimized with respect to k. Because
the last term in independent of x;, it merely adds a constant term to the log likelihood and
is irrelevant for the minimization.

There are many programs available to do such minimization (Root for example, has
a good interface to the Minuit minimization package). However, you can also find the
minimum by by seeing how In (£(z; k)) changes when « is varied. An example root macro
to generate fake data for the case A =1, B = 2 and to use these data to determine x can
be found here:

http://physics.1bl.gov/shapiro/Physics226 /myLikelihoodFit.C

The output of this macro is provided on the next page:



Determination of x from 1,000 MC events

True x=0.5
Estimate of kappa: 0.53
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-0.21
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